

Kinetics: study reaction rates and relate to the mechanism

- Mechanism: the chemical steps that a reaction takes to get from reactants to products.
- Thermodynamics tells if a reaction is product or reactant favored.
- Kinetics tells how fast (reaction rate) a reaction goes to products.

Dr. Michael Love (2)

Dr. Michael Love (6)

© 2007

Reaction Mechanism: sequence of events that control the speed and outcome of a reaction. Reaction rate depends on the slow step

Reaction rate: change in concentration of a reactant or product with time.		
• Three "types"	of rates	
-initial rate		
-average rate		
–instantaneous rate		
the second se	Measure reaction rate	
	Bleach oxidizes blue dye	
	Plot [dye] vs. time	
1	Rate is the slope of the plot,	
X	-Δ[dye]/Δt	

[]↑, rate ↑

T↑, rate †

Surface area \dagger , rate \dagger

Add catalyst, rate †

Lab: iodine clock reaction

1. Peroxide oxidizes iodide to iodine (slow)

 $H_2O_2 + 2I^- + 2H^+ \rightarrow 2H_2O + I_2$

2. Thiosulfate reduces iodine to iodide (fast)

$$I_2 + 2S_2O_3^{2-} \rightarrow S_4O_6^{2-} + 2I^{-}$$

© 200

Dr. Michael Love (9)

3. Iodine gives a blue starch complex after thiosulfate is gone.

To determine a reaction mechanism from experiments:

Vary the initial concentration of reactant

Measure the effect on rate

r. Michael Love (10)

For example: H₂S replaces Cl⁻ in Pt(NH₃)₂Cl₂

 $\mathsf{Pt}(\mathsf{NH}_3)_2\mathsf{Cl}_2(\mathsf{aq}) + \mathsf{H}_2\mathsf{S}(\mathsf{aq}) \rightarrow [\mathsf{Pt}(\mathsf{NH}_3)_2(\mathsf{H}_2\mathsf{S})\mathsf{Cl}]^+(\mathsf{aq}) + \mathsf{Cl}^{\scriptscriptstyle +}(\mathsf{aq})$

Experiments find that reaction rate increases linearly with increasing concentration of $Pt(NH_3)_2Cl_2$, and it increases linearly with increasing concentration of H_2S

Write rate law based on data: [] ↑, rate ↑ Rate law: rate = k [Pt(NH₃)₂Cl₂][H₂S] -<u>Δ[Pt(NH₃)₂Cl₂]</u> -<u>Δt</u> = k [Pt(NH₃)₂Cl₂][H₂S] Δt k is the rate constant which is independent of concentration, but increases with increasing temperature.

		13
Wri	te rate law based on data	
For a gen	eral reaction: $aA + bB {C} dD + eE$	
Rate= -1/a(d[A]/dt)= -1/b(d[B]/dt)= 1/d(d[D]/dt)= 1/e(d[E]/dt)	
Rate law:	rate = k [A]¤[B]¤[C] ^r	
p, q, and r and cat	r are the order of reaction for A, B, alyst C from experiment, respectively.	
Order	Effect of concentration on rate	
0	rate unaffected by []	
1	rate increases linearly with []	
2	rate increases with [] ²	
1 <u>2</u>	rate increases with [] ^{1/2}	
Dr. Michael Love (13)	0 2007	

	Example: rate law	15
For rate	e = k [A] ^p	
<u>if p is</u>	When [A] doubles, rate ?	
Ó	rate stays constant, 2º = 1	
1	rate doubles, 21 = 2	
2	rate quadruples, 2² = 4	
<u>1</u> 2	rate increases 1.4x, 2 ^{1/2} = 1.4	
Dr. Michael Love (15)	© 2007	

$\begin{array}{c} CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \\ rate = k [CH_4]^m [O_2]^n \\ \uparrow & \uparrow & \uparrow \\ \hline \\$	Example: Determine m, n, k, and then rate from rate law.			16
[CH₄] [O₂] rate (M/s) T=25°C 1.0 1.0 2.0 1.0 2.0 4.0 2.0 1.0 8.0 2.0 2.0 ?	$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ rate = k [CH_4] ^m [O_2] ⁿ			
	[CH₄] 1.0 1.0 2.0 2.0	[<i>O</i> ₂] 1.0 2.0 1.0 2.0	rate (M/s) T=25°C 2.0 4.0 8.0 ?	

Example: Determine m, n, k, and then rate from rate law.				17
CH ₄ + 2O ₂ → CO ₂ + 2H ₂ O rate = k [CH ₄] ² [O ₂] ¹ k=2.0 s ⁻¹ M ⁻²				
	order 7 stoicniometry			
$[CH_4]$	$[O_2]$	rate (M	<u>(/s) 1=25°C</u>	
1.0	1.0	2.0		
1.0	2.0	4.0	Run experiment at	
2.0	1.0	8.0	another temperature to get effect of T on k	
2.0	2.0	16	-	
Dr. Michael Love (17)	© 2007			

Example: integrated rate law

If the rate law for the reaction of sucrose is rate=k[sucrose], and k=0.012s⁻¹, how long does it take for the concentration of 0.10M sucrose to drop by 90%?

²⁰ **Example: integrated rate law** If the rate law for the reaction of sucrose is rate=k[sucrose], and k=0.012s⁻¹, how long does it take for the concentration of 0.10M sucrose to drop by 90%? In([A]₀/[A]₁) = k·t (use first order) k=0.012s⁻¹, [A]₀=0.10M, [A]₁=0.10*(1-0.9) In(0.10/0.01) = 0.012s^{-1.}t t = 190s

Dr. Michael Love (20)

© 2007

Integrated rate laws and straight-line plots of data

First order: $ln([A]_0/[A]_t) = k \cdot t$ A plot of $ln(1/[A]_t)$ vs. t is a line with slope=k, or $ln([A]_t)$ vs. t has slope=-k.

Dr. Michael Love (19)

Dr. Michael Love (21)

© 2007

Zero order: [A]_t = [A]₀ – k·t A plot of [A]_t vs. t is a line with slope=-k.

Second order: $1/[A]_t - 1/[A]_0 = k \cdot t$ A plot of $1/[A]_t$ vs. t is a line with slope=k.

Example: Half-Life				25
Rate = $k[H_2O_2]$ and $k = 3.3 \times 10^{-4} \text{ sec}^{-1}$. Half-life is 35 min. Start with 5.00 g H_2O_2 . What mass remains after 2 hr and 20 min (140 min)?				
Solution				
2 hr and 20 min = 4 half-lives				
Half-life	Time Elapsed	Mass	Fraction	
1st	35 min	2.50 g	1/2	
2nd	70	1.25 g	1/4	
3rd	105	0.625 g	1/8	
4th	140	0.313 g	1/16	
Or calculate from integrated first-order expression				

Half-Lives of Radioactive Elements			
Radioactive decay	Half Life		
^{99m} Tc> ⁹⁹ Tc + γ	6 hr		
^{14}C > ^{14}N + β	5730 y		
²³⁸ U> ²³⁴ Th+α	4.468 x 10 ⁹ y		

Mechanisms: how reactants are converted to products Rate law → Mechanism

experiment \rightarrow theory

Activation energy, E_a: energy needed for reactant molecules to react. Molecules must get E_a to react for the slow step in the mechanism

Arrhenius equation relates rate constant to activation energy and temperature (K) $k = Ae^{-E_a / RT}$ k = rate constant k = rate constant k = rate constant R = Requency factor for collisions with correct geometry $Ea^{a} = activation energy$ R = 8.314MolK (gas law constant) T = temperature in K

Arrhenius plot, ln(k) vs 1/T, is linear with slope=-E_a/R

Linearized Arrhenius equation: Ln(k) = -(Ea/R)(1/T) + In(A) $\begin{array}{l} \mbox{Collision Theory: to react,}\\ \mbox{reactants need } E_a \mbox{ and correct}\\ \mbox{geometry}\\ \mbox{O}_3(g) + Cl(g) \rightarrow O_2(g) + ClO(g)\\ \mbox{1.Activation energy,}\\ \mbox{Ea} \end{array} \begin{array}{l} 2. \mbox{ Activation energy}\\ \mbox{and geometry}\\ \mbox{and geometry}\\ \end{array}$

Catalysts lower Ea, and rate †

 MnO_2 catalyzes decomposition of H_2O_2 : $2H_2O_2 \rightarrow 2H_2O + O_2$

> Decomposition of H_2O_2 is faster with a catalyst because the activation energy, Ea, of reaction is lower

Summary: How do I tell if ^a a reaction is 1st order?

- Rate law has 1 species to the 1st power.
- Reaction rate data increases directly (linearly) with concentration (slope=k).
- In([A]_t) data decreases linearly with time (slope=-k).
- The slow step in the reaction mechanism has a single chemical reactant (such as a decomposition reaction)
- The half life is constant with time

Dr. Michael Love (38) © 2007